MHD Turbulence in Laboratory Plasmas

MHD Turbulence in Laboratory Plasmas#

Investigate turbulence in laboratory plasmas, where MHD interactions occur within controlled magnetic confinement devices such as tokamaks or stellarators.

Mathematical Model#

  1. MHD Equations:

\[\begin{split} \begin{align*} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \rho \frac{D\mathbf{v}}{Dt} &= -\nabla p + \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau} + \mathbf{J} \times \mathbf{B} + \nu \nabla^2 \mathbf{v} \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B}) \\ \mathbf{J} &= \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \\ \rho C_p \frac{DT}{Dt} &= -p \nabla \cdot \mathbf{v} + \nabla \cdot (k \nabla T) + \frac{1}{\sigma}(\mathbf{J} \cdot \mathbf{E}) \end{align*} \end{split}\]
  1. Initial and Boundary Conditions:

  • Initial condition: Conditions reflecting the initial state of the plasma.

  • Boundary conditions: Set appropriate conditions for the plasma confinement device.