SymPDE concepts and their mathematical meaning#

Domain#

sympde notation

Mathematical notion

Domain('Omega', dim=n)

an abstract domain \(\Omega \subset \mathbb{R}^n\)

Domain('Omega', interiors, boundaries, connectivity)

an abstract domain \(\Omega \subset \mathbb{R}^n\), represented by its interiors, boundaries and connectivity

Interval('I', coordinate=x)

an abstract (interior) interval \(I \subset \mathbb{R}\), with the coordinate \(x\)

Union(A, B, C)

union of domains \(A \cup B \cup C\)

ProductDomain(A, B)

product of two domains \(A \times B\)

Indicator(A)

Indicator/characteristic function on \(A\), i.e. \(\mathbf{1}\_A\)

Line('Omega')

an abstract line segment, \(\Omega \subset \mathbb{R}\), having one interval as interior domain

Square('Omega')

an abstract square, \(\Omega \subset \mathbb{R}^2\), having one interior domain as product of two intervals

Cube('Omega')

an abstract cube, \(\Omega \subset \mathbb{R}^3\), having one interior domain as product of three intervals

NormalVector('n')

Normal vector \(\mathbf{n}\)

TangentVector('t')

Tangent vector \(\mathbf{t}\)

e = ElementDomain(Omega)

an element of an abstract domain \(e \in \mathcal{T}(\Omega)\) or \(e = d\Omega\), where \(\mathcal{T}(\Omega)\) is a given tessellation of \(\Omega\)

DomainArea(Omega)

Area of an abstract domain \(\Omega\)

ElementArea(Omega)

Area of an abstract element of a domain \(\Omega\)

Area(A)

Area of an expression of topological domain notions

Mapping#

sympde notation

Mathematical notion

Mapping('F', n)

a mapping functor \(\mathbf{F}\_{\Omega} := \left( \mathbf{F}, \Omega \right): \Omega \rightarrow \mathbb{R}^n\)

F[i]

\(i^{th}\) physical coordinate from \(\{x,y,z\}\)

F.jacobian

the jacobian matrix \(\mathcal{D}\_\mathbf{F}\)

F.det_jacobian

determinant of the jacobian matrix, \(J_\mathbf{F}:= \mathrm{det} ~\mathcal{D}\_\mathbf{F}\)

F.covariant

the covariant matrix \(\left( \mathcal{D}\_\mathbf{F} \right)^{-T}\)

F.contravariant

the contravariant matrix \(\frac{1}{J_\mathbf{F}} \mathcal{D}\_\mathbf{F}\)

F.hessian

the hessian matrix \(\mathcal{H}\_\mathbf{F}\)

Covariant(F, v)

action of the covariant matrix of \(\mathbf{F}\) on \(\mathbf{v}\), i.e. \(\left( \mathcal{D}\_\mathbf{F} \right)^{-T} \mathbf{v}\)

Contravariant(F, v)

action of the contravariant matrix of \(\mathbf{F}\) on \(\mathbf{v}\), i.e. \(\frac{1}{J_\mathbf{F}} \mathcal{D}\_\mathbf{F} \mathbf{v}\)

Function spaces#

sympde notation

Mathematical notion

ScalarFunctionSpace('V', Omega)

scalar function space \(\mathcal{V}\)

VectorFunctionSpace('W', Omega)

vector function space \(\mathbf{\mathcal{W}}\)

ProductSpace(V, W) or V*W

product of spaces, i.e. \(\mathcal{V} \times \mathcal{W}\)

element_of_space(V, 'v')

scalar function \(v \in \mathcal{V}\)

element_of_space(W, 'w')

vector function \(\mathbf{w} \in \mathcal{W}\)

element_of_space(V*W, ['v', 'w'])

\(\left(v,\mathbf{w}\right) \in \mathcal{V} \times \mathcal{W}\)

Function space types#

sympde notation

Mathematical notion

H1SpaceType

\(H^1\)

HcurlSpaceType

\({H}{\mbox{curl}}\)

HdivSpaceType

\({H}{\mbox{div}}\)

L2SpaceType

\(L^2\)

Typed function spaces#

sympde notation

Mathematical notion

ScalarFunctionSpace('V0', Omega, kind='H1')

scalar function space \(\mathcal{V}\_0 \subseteq H^1(\Omega)\)

VectorFunctionSpace('V1', Omega, kind='Hcurl')

vector function space \(\mathcal{V}\_1 \subseteq H(\mbox{curl}, \Omega)\)

VectorFunctionSpace('V2', Omega, kind='Hdiv')

vector function space \(\mathcal{V}\_2 \subseteq H(\mbox{div}, \Omega)\)

ScalarFunctionSpace('V3', Omega, kind='L2')

scalar function space \(\mathcal{V}\_3 \subseteq L^2(\Omega)\)

Projections#

sympde notation

Mathematical notion

P_V := Projector(V)

Projector onto the function space \(\mathcal{V}\)

P_V(expr)

Projection of the expression expr onto the function space \(\mathcal{V}\)

Pi_V := Projector(V, 'commuting')

Commuting projector onto the typed function space \(\mathcal{V}\)

Pi_V(expr)

Commuting projection of the expression expr onto the typed function space \(\mathcal{V}\)

Atomic variables#

sympde notation

Mathematical notion

ScalarFunction(V, 'u')

\(u \in \mathcal{V}\)

VectorFunction(W, 'w')

\(\mathbf{w} \in \mathcal{W}\)

Constant('mu', real=True)

constant number \(\mu \in \mathbb{R}\)

int

integer number

float

floating-point number

Algebraic operators#

sympde notation

Mathematical notion

dot(u, v)

\(\mathbf{u} \cdot \mathbf{v}\)

inner(u, v)

\(\mathbf{u} : \mathbf{v}\)

cross(u, v)

\(\mathbf{u} \times \mathbf{v}\)

outer(u, v)

\(\mathbf{u} \otimes \mathbf{v}\)

Differential operators#

boldface font is used for vector functions/expressions

sympde notation

Mathematical notion

dx(u), dy(u) or dz(u)

\(\partial_x u\), \(\partial_y u\) or \(\partial_z u\)

grad(u)

\(\nabla u\) or \(\nabla \mathbf{u}\)

div(u)

\(\nabla \cdot \mathbf{u}\)

curl(u)

\(\nabla \times \mathbf{u}\)

rot(u)

2D rotational \(\nabla \times u\)

convect(a, u)

\(\left( \mathbf{a} \cdot \nabla \right) \mathbf{u}\)

trace(u)

trace \(\gamma(u)\)

Dn(u)

normal derivative \(\partial_{\mathbf{n}} u\)

D(u)

Strain tensor \(\frac{1}{2}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \)

laplace(u)

Laplace \(\Delta u\)

hessian(u)

Hessian \(H(u)\)

bracket(u,v)

Poisson Bracket \([u,v]\)

Additional operators#

sympde notation

Mathematical notion

jump(u)

jump of \(u\), i.e. \([u]\)

avg(u)

average of \(u\), i.e. \(\langle u \rangle\)

conv(K,u)

convolution of \(u\) with a kernel \(K\), i.e. \(K * u\)

Integral operators#

sympde notation

Mathematical notion

DomainIntegral(f)

integral over a domain, i.e. \((f, \Omega) \mapsto \int_{\Omega} f ~d\Omega\)

BoundaryIntegral(f)

integral over a boundary, i.e. \((f, \Gamma) \mapsto \int_{\Gamma} f ~d\partial\Omega\)

PathIntegral(F)

integral over an oriented path, i.e. \((\mathbf{F}, C) \mapsto \int_{C} \mathbf{F} \cdot d\mathbf{s}\)

SurfaceIntegral(F)

integral over an oriented surface, i.e. \((\mathbf{F}, S) \mapsto \int_{S} \mathbf{F} \cdot d\mathbf{S}\)