SymPDE concepts and their mathematical meaning#
Domain#
sympde notation |
Mathematical notion |
---|---|
|
an abstract domain \(\Omega \subset \mathbb{R}^n\) |
|
an abstract domain \(\Omega \subset \mathbb{R}^n\), represented by its interiors, boundaries and connectivity |
|
an abstract (interior) interval \(I \subset \mathbb{R}\), with the coordinate \(x\) |
|
union of domains \(A \cup B \cup C\) |
|
product of two domains \(A \times B\) |
|
Indicator/characteristic function on \(A\), i.e. \(\mathbf{1}\_A\) |
|
an abstract line segment, \(\Omega \subset \mathbb{R}\), having one interval as interior domain |
|
an abstract square, \(\Omega \subset \mathbb{R}^2\), having one interior domain as product of two intervals |
|
an abstract cube, \(\Omega \subset \mathbb{R}^3\), having one interior domain as product of three intervals |
|
Normal vector \(\mathbf{n}\) |
|
Tangent vector \(\mathbf{t}\) |
|
an element of an abstract domain \(e \in \mathcal{T}(\Omega)\) or \(e = d\Omega\), where \(\mathcal{T}(\Omega)\) is a given tessellation of \(\Omega\) |
|
Area of an abstract domain \(\Omega\) |
|
Area of an abstract element of a domain \(\Omega\) |
|
Area of an expression of topological domain notions |
Mapping#
sympde notation |
Mathematical notion |
---|---|
|
a mapping functor \(\mathbf{F}\_{\Omega} := \left( \mathbf{F}, \Omega \right): \Omega \rightarrow \mathbb{R}^n\) |
|
\(i^{th}\) physical coordinate from \(\{x,y,z\}\) |
|
the jacobian matrix \(\mathcal{D}\_\mathbf{F}\) |
|
determinant of the jacobian matrix, \(J_\mathbf{F}:= \mathrm{det} ~\mathcal{D}\_\mathbf{F}\) |
|
the covariant matrix \(\left( \mathcal{D}\_\mathbf{F} \right)^{-T}\) |
|
the contravariant matrix \(\frac{1}{J_\mathbf{F}} \mathcal{D}\_\mathbf{F}\) |
|
the hessian matrix \(\mathcal{H}\_\mathbf{F}\) |
|
action of the covariant matrix of \(\mathbf{F}\) on \(\mathbf{v}\), i.e. \(\left( \mathcal{D}\_\mathbf{F} \right)^{-T} \mathbf{v}\) |
|
action of the contravariant matrix of \(\mathbf{F}\) on \(\mathbf{v}\), i.e. \(\frac{1}{J_\mathbf{F}} \mathcal{D}\_\mathbf{F} \mathbf{v}\) |
Function spaces#
sympde notation |
Mathematical notion |
---|---|
|
scalar function space \(\mathcal{V}\) |
|
vector function space \(\mathbf{\mathcal{W}}\) |
|
product of spaces, i.e. \(\mathcal{V} \times \mathcal{W}\) |
|
scalar function \(v \in \mathcal{V}\) |
|
vector function \(\mathbf{w} \in \mathcal{W}\) |
|
\(\left(v,\mathbf{w}\right) \in \mathcal{V} \times \mathcal{W}\) |
Function space types#
sympde notation |
Mathematical notion |
---|---|
|
\(H^1\) |
|
\({H}{\mbox{curl}}\) |
|
\({H}{\mbox{div}}\) |
|
\(L^2\) |
Typed function spaces#
sympde notation |
Mathematical notion |
---|---|
|
scalar function space \(\mathcal{V}\_0 \subseteq H^1(\Omega)\) |
|
vector function space \(\mathcal{V}\_1 \subseteq H(\mbox{curl}, \Omega)\) |
|
vector function space \(\mathcal{V}\_2 \subseteq H(\mbox{div}, \Omega)\) |
|
scalar function space \(\mathcal{V}\_3 \subseteq L^2(\Omega)\) |
Projections#
sympde notation |
Mathematical notion |
---|---|
|
Projector onto the function space \(\mathcal{V}\) |
|
Projection of the expression |
|
Commuting projector onto the typed function space \(\mathcal{V}\) |
|
Commuting projection of the expression |
Atomic variables#
sympde notation |
Mathematical notion |
---|---|
|
\(u \in \mathcal{V}\) |
|
\(\mathbf{w} \in \mathcal{W}\) |
|
constant number \(\mu \in \mathbb{R}\) |
|
integer number |
|
floating-point number |
Algebraic operators#
sympde notation |
Mathematical notion |
---|---|
|
\(\mathbf{u} \cdot \mathbf{v}\) |
|
\(\mathbf{u} : \mathbf{v}\) |
|
\(\mathbf{u} \times \mathbf{v}\) |
|
\(\mathbf{u} \otimes \mathbf{v}\) |
Differential operators#
boldface font is used for vector functions/expressions
sympde notation |
Mathematical notion |
---|---|
|
\(\partial_x u\), \(\partial_y u\) or \(\partial_z u\) |
|
\(\nabla u\) or \(\nabla \mathbf{u}\) |
|
\(\nabla \cdot \mathbf{u}\) |
|
\(\nabla \times \mathbf{u}\) |
|
2D rotational \(\nabla \times u\) |
|
\(\left( \mathbf{a} \cdot \nabla \right) \mathbf{u}\) |
|
trace \(\gamma(u)\) |
|
normal derivative \(\partial_{\mathbf{n}} u\) |
|
Strain tensor \(\frac{1}{2}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \) |
|
Laplace \(\Delta u\) |
|
Hessian \(H(u)\) |
|
Poisson Bracket \([u,v]\) |
Additional operators#
sympde notation |
Mathematical notion |
---|---|
|
jump of \(u\), i.e. \([u]\) |
|
average of \(u\), i.e. \(\langle u \rangle\) |
|
convolution of \(u\) with a kernel \(K\), i.e. \(K * u\) |
Integral operators#
sympde notation |
Mathematical notion |
---|---|
|
integral over a domain, i.e. \((f, \Omega) \mapsto \int_{\Omega} f ~d\Omega\) |
|
integral over a boundary, i.e. \((f, \Gamma) \mapsto \int_{\Gamma} f ~d\partial\Omega\) |
|
integral over an oriented path, i.e. \((\mathbf{F}, C) \mapsto \int_{C} \mathbf{F} \cdot d\mathbf{s}\) |
|
integral over an oriented surface, i.e. \((\mathbf{F}, S) \mapsto \int_{S} \mathbf{F} \cdot d\mathbf{S}\) |