Fluid-Structure Interaction in a Flexible Channel

Fluid-Structure Interaction in a Flexible Channel#

Mathematical Model#

Consider the FSI of a flexible channel with fluid flow. The fluid velocity \(\mathbf{v}\) and structural displacement \(u\) are coupled through the FSI problem.

  • Structural Equation:

\[\begin{split} \begin{align*} \rho_s A_s \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \sigma(u) &= 0 \quad \text{in } \Omega_s \times (0, T) \\ u &= 0 \quad \text{on } \Gamma_{\text{fixed}} \times (0, T) \\ \sigma(u) \cdot \mathbf{n} &= \mathbf{t} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \end{split}\]
  • Fluid Equation:

\[\begin{split} \begin{align*} \rho_f \frac{\partial \mathbf{v}}{\partial t} + \rho_f (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla \cdot \sigma(\mathbf{v}) &= 0 \quad \text{in } \Omega_f \times (0, T) \\ \mathbf{v} &= \mathbf{0} \quad \text{on } \Gamma_{\text{inlet}} \times (0, T) \\ \sigma(\mathbf{v}) \cdot \mathbf{n} &= p \cdot \mathbf{n} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \end{split}\]
  • Coupling Conditions:

\[\begin{split} \begin{align*} \mathbf{v}(\mathbf{x}, t) &= \mathbf{v}_f(\mathbf{x}, t) \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \\ \sigma(u) \cdot \mathbf{n} &= \sigma(\mathbf{v}) \cdot \mathbf{n} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \end{split}\]

Weak Formulation#

Find \(u \in V_s\) and \(\mathbf{v} \in V_f\) such that

\[\begin{split} \begin{align*} \int_{\Omega_s} \rho_s A_s \frac{\partial^2 u}{\partial t^2} \phi_s \, d\Omega &- \int_{\Omega_s} \nabla \cdot \sigma(u) \cdot \nabla \phi_s \, d\Omega = 0 \\ \int_{\Omega_f} \rho_f \frac{\partial \mathbf{v}}{\partial t} \cdot \mathbf{\phi}_f \, d\Omega &+ \int_{\Omega_f} \rho_f (\mathbf{v} \cdot \nabla) \mathbf{v} \cdot \mathbf{\phi}_f \, d\Omega - \int_{\Omega_f} \nabla \cdot \sigma(\mathbf{v}) \cdot \nabla \mathbf{\phi}_f \, d\Omega = 0 \end{align*} \end{split}\]

for all \(\phi_s \in V_s\) and \(\mathbf{\phi}_f \in V_f\).