Bingham Plastic Flow in a Pipe#
Mathematical Model#
Consider the Bingham plastic model for non-Newtonian fluids with yield stress:
\[\begin{split}
\begin{align}
\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} &= -\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{\tau_0}{\rho}\frac{\partial^2 u}{\partial y^2} \\
\frac{\partial^2 u}{\partial y^2} &\geq 0 \quad \text{(Yield stress condition)}
\end{align}
\end{split}\]
where \(u\) is the velocity, \(p\) is the pressure, \(\rho\) is the density, \(\tau_0\) is the yield stress, and \(y\) is the radial coordinate.
Boundary Conditions#
Inlet: Specify velocity or pressure conditions.
Outlet: Specify outflow conditions.
Pipe walls: No-slip conditions.
Initial Conditions#
Specify initial conditions for velocity and pressure.
Weak Formulation#
Find \(u \in H_0^1(\Omega)\) and \(p \in L^2(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \frac{\partial u}{\partial t}v \, d\Omega + \int_{\Omega} u\frac{\partial u}{\partial x}v \, d\Omega + \int_{\Omega} \frac{1}{\rho}\frac{\partial p}{\partial x}v \, d\Omega \\
&+ \int_{\Omega} \frac{\tau_0}{\rho}\frac{\partial^2 u}{\partial y^2}\frac{\partial v}{\partial y} \, d\Omega \\
&= 0
\end{align}
\end{split}\]
for all test functions \(v \in H_0^1(\Omega)\).