Two-Way Fluid-Structure Interaction in a Tube

Two-Way Fluid-Structure Interaction in a Tube#

Mathematical Model#

Consider the two-way FSI of a flexible tube conveying fluid. The fluid pressure (p) and structural displacement (u) are coupled through the FSI problem.

  • Structural Equation:

\[\begin{split} \begin{align*} \rho_s A_s \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \sigma(u) &= 0 \quad \text{in } \Omega_s \times (0, T) \\ u &= 0 \quad \text{on } \Gamma_{\text{fixed}} \times (0, T) \\ \sigma(u) \cdot \mathbf{n} &= p \cdot \mathbf{n} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \end{split}\]
  • Fluid Equation:

\[\begin{split} \begin{align*} \rho_f \frac{\partial^2 p}{\partial t^2} - \nabla \cdot \sigma(p) &= 0 \quad \text{in } \Omega_f \times (0, T) \\ p &= 0 \quad \text{on } \Gamma_{\text{inlet}} \times (0, T) \\ \sigma(p) \cdot \mathbf{n} &= \sigma(u) \cdot \mathbf{n} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \end{split}\]
  • Coupling Conditions:

\[ \begin{align*} \sigma(u) \cdot \mathbf{n} &= \sigma(p) \cdot \mathbf{n} \quad \text{on } \Gamma_{\text{interface}} \times (0, T) \end{align*} \]

Weak Formulation#

Find \(u \in V_s\) and \(p \in V_f\) such that

\[\begin{split} \begin{align*} \int_{\Omega_s} \rho_s A_s \frac{\partial^2 u}{\partial t^2} \phi_s \, d\Omega &- \int_{\Omega_s} \nabla \cdot \sigma(u) \cdot \nabla \phi_s \, d\Omega = 0 \\ \int_{\Omega_f} \rho_f \frac{\partial^2 p}{\partial t^2} \phi_f \, d\Omega &- \int_{\Omega_f} \nabla \cdot \sigma(p) \cdot \nabla \phi_f \, d\Omega = 0 \end{align*} \end{split}\]

for all \(\phi_s \in V_s\) and \(\phi_f \in V_f\).