Piezoelectric Material#
Mathematical Model:
\[\begin{split}
\begin{align*}
&\text{Mechanical Deformation:} \quad \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} - \nabla \cdot (\boldsymbol{\sigma}) = \mathbf{0} \\
&\text{Piezoelectricity:} \quad \nabla \cdot \mathbf{D} = \rho_e, \quad \frac{\partial \mathbf{D}}{\partial t} = \mathbf{d} \frac{\partial T}{\partial t}
\end{align*}
\end{split}\]
Weak Formulation:
\[\begin{split}
\begin{align*}
&\text{Mechanical Deformation:} \quad \int_{\Omega} \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} \cdot \mathbf{v} \,d\Omega - \int_{\Omega} \nabla \cdot (\boldsymbol{\sigma}) \cdot \mathbf{v} \,d\Omega = 0 \\
&\text{Piezoelectricity:} \quad \int_{\Omega} \nabla \cdot \mathbf{D} \phi \,d\Omega = \int_{\Omega} \rho_e \phi \,d\Omega, \quad \int_{\Omega} \frac{\partial \mathbf{D}}{\partial t} \cdot \boldsymbol{\psi} \,d\Omega \\
&\quad = \int_{\Omega} \mathbf{d} \frac{\partial T}{\partial t} \cdot \boldsymbol{\psi} \,d\Omega
\end{align*}
\end{split}\]