Free Surface Flow (Navier-Stokes with Free Surface)#
Mathematical Model#
Consider the Navier-Stokes equations coupled with a level set or volume-of-fluid method for tracking a free surface:
\[\begin{split}
\begin{align}
\rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} \\
\nabla \cdot \mathbf{v} &= 0 \\
\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi &= 0
\end{align}
\end{split}\]
where \(\phi\) is the level set or volume fraction representing the free surface.
Boundary Conditions#
Inlet and outlet: Specify velocity or pressure conditions.
No-slip conditions on solid boundaries.
Implement the level set or volume fraction boundary conditions.
Initial Conditions#
Specify initial conditions for velocity, pressure, and the level set or volume fraction.
Weak Formulation#
Find \(\mathbf{v} \in H_0^1(\Omega)\), \(p \in L^2(\Omega)\), and \(\phi \in H^1(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \rho \frac{\partial \mathbf{v}}{\partial t} \cdot \mathbf{w} \, d\Omega + \int_{\Omega} \rho (\mathbf{v} \cdot \nabla) \mathbf{v} \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \mu \nabla \mathbf{v} : \nabla \mathbf{w} \, d\Omega - \int_{\Omega} p \nabla \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \nabla \cdot \mathbf{v} q \, d\Omega + \int_{\Omega} \frac{\partial \phi}{\partial t} q \, d\Omega + \int_{\Omega} \mathbf{v} \cdot \nabla \phi q \, d\Omega \\
&= 0
\end{align}
\end{split}\]
for all test functions \(\mathbf{w} \in H_0^1(\Omega)\), \(q \in L^2(\Omega)\), and \(r \in H^1(\Omega)\).