Power Law Fluid Flow in a Channel#
Mathematical Model#
Consider the steady-state power-law fluid model for non-Newtonian fluids:
\[\begin{split}
\begin{align}
\sigma_{ij} &= -p\delta_{ij} + \lambda \varepsilon_{kk}\delta_{ij} + 2\mu \varepsilon_{ij} \\
\varepsilon_{ij} &= \frac{1}{2}\left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i}\right) \\
\end{align}
\end{split}\]
where \(\sigma_{ij}\) is the stress tensor, \(p\) is the pressure, \(\lambda\) and \(\mu\) are material constants, \(v_i\) is the velocity, and \(\varepsilon_{ij}\) is the strain rate.
Boundary Conditions:#
Inlet and outlet: Specify velocity or pressure conditions.
Channel walls: No-slip conditions.
Initial Conditions#
Start with an initial guess for velocity and pressure.
Weak Formulation#
Find \(v_i \in H_0^1(\Omega)\) and \(p \in L^2(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \sigma_{ij} \varepsilon_{ij} \, d\Omega + \int_{\Omega} \frac{\partial p}{\partial x_i}v_i \, d\Omega \\
&= 0
\end{align}
\end{split}\]
for all test functions \(v_i \in H_0^1(\Omega)\).