MHD Kelvin-Helmholtz Instability in Magnetized Flows

MHD Kelvin-Helmholtz Instability in Magnetized Flows#

Study the stability of two fluid layers with different velocities and magnetic fields, leading to the development of the Kelvin-Helmholtz instability.

Mathematical Model#

  1. MHD Equations:

\[\begin{split} \begin{align*} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \rho \frac{D\mathbf{v}}{Dt} &= -\nabla p + \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau} + \mathbf{J} \times \mathbf{B} \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B}) \\ \mathbf{J} &= \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \\ \rho C_p \frac{DT}{Dt} &= -p \nabla \cdot \mathbf{v} + \nabla \cdot (k \nabla T) + \frac{1}{\sigma}(\mathbf{J} \cdot \mathbf{E}) \end{align*} \end{split}\]
  1. Initial and Boundary Conditions:

  • Initial condition: \(\rho(\mathbf{x},0) = \rho_0, \mathbf{v}(\mathbf{x},0) = \mathbf{v}_0, \mathbf{B}(\mathbf{x},0) = \mathbf{B}_0, T(\mathbf{x},0) = T_0\)

  • Boundary conditions: Appropriate conditions on \(\mathbf{v}, \mathbf{B}, T\) at the interfaces.