The Biharmonic problem#
We consider the (inhomogeneous) biharmonic equation with homogeneous essential boundary conditions,
\[
\begin{align}
\nabla^2 \nabla^2 u = f \quad \text{in $\Omega$} , \quad \quad
u = 0 \quad \text{on $\partial \Omega$}, \quad \quad
\nabla u \cdot \mathbf{n} = 0 \quad \text{on $\partial \Omega$}.
\end{align}
\]
The Variational Formulation#
An \(H^2\)-conforming variational formulation reads
\[
\begin{align}
\text{find $u \in V$ such that} \quad a(u,v) = l(v) \quad \forall v \in V,
\end{align}
\]
where
\(V \subset H^2(\Omega)\),
\(a(u,v) := \int_{\Omega} \nabla^2 u ~ \nabla^2 v ~ d\Omega\),
\(l(v) := \int_{\Omega} f v ~ d\Omega\).
Formal Model#
In this example, the analytical solution is given by
\[
u_e = \sin(\pi x)^2 \sin(\pi y)^2
\]
from sympde.expr import BilinearForm, LinearForm, integral
from sympde.expr import find, EssentialBC, Norm, SemiNorm
from sympde.topology import ScalarFunctionSpace, Square, element_of
from sympde.calculus import laplace, dot
from sympy import pi, sin
domain = Square()
V = ScalarFunctionSpace('V', domain)
x,y = domain.coordinates
u,v = [element_of(V, name=i) for i in ['u', 'v']]
# the analytical solution and its rhs
ue = sin(pi * x)**2 * sin(pi * y)**2
f = laplace(laplace(ue))
# bilinear form
a = BilinearForm((u,v), integral(domain , laplace(u)*laplace(v)))
# linear form
l = LinearForm(v, integral(domain, f*v))
# Dirichlet boundary conditions
bc = [EssentialBC(u, 0, domain.boundary)]
# Variational problem
equation = find(u, forall=v, lhs=a(u, v), rhs=l(v), bc=bc)
Discretization#
We shall need the discretize function from PsyDAC.
from psydac.api.discretization import discretize
degree = [2,2]
ncells = [8,8]
# Create computational domain from topological domain
domain_h = discretize(domain, ncells=ncells, comm=None)
# Create discrete spline space
Vh = discretize(V, domain_h, degree=degree)
# Discretize equation
equation_h = discretize(equation, domain_h, [Vh, Vh])
Solving the PDE#
uh = equation_h.solve()
Computing the error norm#
Computing the \(L^2\) norm#
u = element_of(V, name='u')
# create the formal Norm object
l2norm = Norm(u - ue, domain, kind='l2')
# discretize the norm
l2norm_h = discretize(l2norm, domain_h, Vh)
# assemble the norm
l2_error = l2norm_h.assemble(u=uh)
# print the result
print(l2_error)
0.5367871671842632
Computing the \(H^1\) semi-norm#
# create the formal Norm object
h1norm = SemiNorm(u - ue, domain, kind='h1')
# discretize the norm
h1norm_h = discretize(h1norm, domain_h, Vh)
# assemble the norm
h1_error = h1norm_h.assemble(u=uh)
# print the result
print(h1_error)
2.4343747827631277
Computing the \(H^1\) norm#
# create the formal Norm object
h1norm = Norm(u - ue, domain, kind='h1')
# discretize the norm
h1norm_h = discretize(h1norm, domain_h, Vh)
# assemble the norm
h1_error = h1norm_h.assemble(u=uh)
# print the result
print(h1_error)
2.492853996086961
Computing the H^2 semi-norm#
# create the formal Norm object
h2norm = SemiNorm(u - ue, domain, kind='h2')
# discretize the norm
h2norm_h = discretize(h2norm, domain_h, Vh)
# assemble the norm
h2_error = h2norm_h.assemble(u=uh)
# print the result
print(h2_error)
9.115861322114647