Heat Conduction in a Solid#
Mathematical Model#
Consider the heat conduction equation in a solid domain (\Omega):
\[
\begin{align}
\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q
\end{align}
\]
Boundary Conditions#
Dirichlet: \(T = T_{\text{inlet}}\) on the inlet face.
Neumann: \(-k \frac{\partial T}{\partial n} = 0\) on the outlet face.
Insulated: \(-k \frac{\partial T}{\partial n} = 0\) on the lateral faces.
Initial Conditions#
Assume an initial temperature distribution \(T_0(x, y, z)\) at \(t = 0\).
Weak Formulation#
Find \(T \in L^2(\Omega)\) such that:
\[
\begin{align}
\int_{\Omega} \rho C_p \frac{\partial T}{\partial t} \phi \, d\Omega + \int_{\Omega} k \nabla T \cdot \nabla \phi \, d\Omega = \int_{\Omega} Q \phi \, d\Omega
\end{align}
\]
for all test functions \(\phi \in H_0^1(\Omega)\).