Convection-Diffusion Equation in a Channel#
Mathematical Model#
Consider the 2D convection-diffusion equation in a channel:
\[
\begin{align}
\rho u \frac{\partial c}{\partial x} + \rho v \frac{\partial c}{\partial y} - \nabla \cdot (D \nabla c) = f
\end{align}
\]
Boundary Conditions#
Inlet: \(c = c_{\text{inlet}}\) with $\mathbf{v} \cdot \mathbf{n} < 0$ (inward flow).
Outlet: \(\frac{\partial c}{\partial x} = \frac{\partial c}{\partial y} = 0\) (zero gradient).
Lateral faces: \(-D \nabla c \cdot \mathbf{n} = 0\) (insulated).
Initial Conditions#
Assume an initial concentration distribution \(c_0(x, y)\) at \(t = 0\).
Weak Formulation#
Find \(c \in H_0^1(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \left(\rho u \frac{\partial c}{\partial x} + \rho v \frac{\partial c}{\partial y}\right) \phi \, d\Omega - \int_{\Omega} D \nabla c \cdot \nabla \phi \, d\Omega \\
&= \int_{\Omega} f \phi \, d\Omega
\end{align}
\end{split}\]
for all test functions \(\phi \in H_0^1(\Omega)\).