Stokes Flow in a Lid-Driven Cavity

Stokes Flow in a Lid-Driven Cavity#

Author: Ahmed Ratnani

Mathematical Model#

Consider the steady-state Stokes equations for flow in a 2D lid-driven cavity:

\[\begin{split} \begin{align} - \nabla p + \mu \nabla^2 \mathbf{v} &= 0 \\ \nabla \cdot \mathbf{v} &= 0 \end{align} \end{split}\]

Boundary Conditions#

  • Lid: \(\mathbf{v} = (1, 0)\) (lid-driven at constant velocity).

  • Other boundaries: \(\mathbf{v} = (0, 0)\) (no-slip condition).

  • Outlet: \(\frac{\partial p}{\partial n} = 0\) (zero-pressure gradient).

Initial Conditions#

Start with an initial guess for velocity and pressure.

Weak Formulation#

Find \(\mathbf{v} \in H_0^1(\Omega)\) and \(p \in L^2(\Omega)\) such that:

\[\begin{split} \begin{align} &\int_{\Omega} \mu \nabla \mathbf{v} : \nabla \mathbf{w} \, d\Omega - \int_{\Omega} p \nabla \cdot \mathbf{w} \, d\Omega \\ &= 0 \end{align} \end{split}\]

for all test functions \(\mathbf{w} \in H_0^1(\Omega)\).