Compressible Flow in a Nozzle#
Mathematical Model#
Consider the compressible Euler equations for flow in a converging-diverging nozzle:
\[\begin{split}
\begin{align}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\
\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) &= 0 \\
\frac{\partial E}{\partial t} + \nabla \cdot \left[(E + p) \mathbf{v}\right] &= 0
\end{align}
\end{split}\]
Boundary Conditions#
Inlet: Specify inflow conditions (\(\rho\), \(\mathbf{v}\), \(p\)).
Outlet: Specify outflow conditions or use characteristic-based boundary conditions.
Nozzle walls: \(\mathbf{v} \cdot \mathbf{n} = 0\) (no penetration).
Initial Conditions#
Specify initial conditions for density, velocity, and pressure.
Weak Formulation#
Find \(\rho, \mathbf{v}, p \in H^1(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v})\right) \phi \, d\Omega \\
&+ \int_{\Omega} \left(\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I})\right) \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \left(\frac{\partial E}{\partial t} + \nabla \cdot \left[(E + p) \mathbf{v}\right]\right) \psi \, d\Omega \\
&= 0
\end{align}
\end{split}\]
for all test functions \(\phi, \mathbf{w}, \psi \in H^1(\Omega)\).