Buoyancy-Driven Natural Convection#
Mathematical Model#
Consider the Boussinesq approximation for buoyancy-driven natural convection:
\[\begin{split}
\begin{align}
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} &= -\frac{1}{\rho_0}\nabla p + \nu \nabla^2 \mathbf{v} + \beta g (T - T_0)\mathbf{k} \\
\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T &= \alpha \nabla^2 T
\end{align}
\end{split}\]
Boundary Conditions#
Vertical walls: \(\mathbf{v} \cdot \mathbf{t} = 0\) and \(\frac{\partial T}{\partial n} = 0\).
Inlet and outlet: Specify velocity or temperature conditions.
Top and bottom: No-slip and adiabatic conditions.
Initial Conditions#
Start with an initial velocity and temperature distribution.
Weak Formulation#
Find \(\mathbf{v} \in H_0^1(\Omega)\) and \(T \in H^1(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right) \cdot \mathbf{w} \, d\Omega + \int_{\Omega} \frac{1}{\rho_0}\nabla p \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \nu \nabla \mathbf{v} : \nabla \mathbf{w} \, d\Omega - \beta g (T - T_0)\mathbf{k} \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T - \alpha \nabla^2 T\right) \psi \, d\Omega \\
&= 0
\end{align}
\end{split}\]
for all test functions \(\mathbf{w}, \psi \in H_0^1(\Omega)\).