Particle-Laden Flow (Lagrangian-Eulerian Approach)#
Mathematical Model#
Consider the incompressible Navier-Stokes equations coupled with the Lagrangian motion of particles:
\[\begin{split}
\begin{align}
\rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{F}_{\text{drag}} \\
\nabla \cdot \mathbf{v} &= 0 \\
\frac{d \mathbf{x}}{dt} &= \mathbf{v}
\end{align}
\end{split}\]
where \(\mathbf{F}_{\text{drag}}\) represents the drag force on the particles.
Boundary Conditions#
Inlet and outlet: Specify velocity or pressure conditions.
Solid particle boundaries: Implement no-slip conditions.
Initial Conditions#
Specify initial conditions for velocity, pressure, and particle positions.
Weak Formulation#
Find \(\mathbf{v} \in H_0^1(\Omega)\) and \(p \in L^2(\Omega)\) such that:
\[\begin{split}
\begin{align}
&\int_{\Omega} \rho \frac{\partial \mathbf{v}}{\partial t} \cdot \mathbf{w} \, d\Omega + \int_{\Omega} \rho (\mathbf{v} \cdot \nabla) \mathbf{v} \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \mu \nabla \mathbf{v} : \nabla \mathbf{w} \, d\Omega - \int_{\Omega} p \nabla \cdot \mathbf{w} \, d\Omega \\
&+ \int_{\Omega} \nabla \cdot \mathbf{v} q \, d\Omega \\
&= -\int_{\Omega} \mathbf{F}_{\text{drag}} \cdot \mathbf{w} \, d\Omega
\end{align}
\end{split}\]
for all test functions \(\mathbf{w} \in H_0^1(\Omega)\) and \(q \in L^2(\Omega)\).