Composite Materials with Thermal Expansion#
Mathematical Model:
\[\begin{split}
\begin{align*}
&\text{Matrix Phase:} \quad \alpha_{\text{matrix}} \frac{\partial T_{\text{matrix}}}{\partial t} - \nabla \cdot (\beta_{\text{matrix}} T_{\text{matrix}} \mathbf{I}) = \mathbf{0} \\
&\text{Fiber Phase:} \quad \alpha_{\text{fiber}} \frac{\partial T_{\text{fiber}}}{\partial t} - \nabla \cdot (\beta_{\text{fiber}} T_{\text{fiber}} \mathbf{I}) = \mathbf{0}
\end{align*}
\end{split}\]
Weak Formulation:
\[\begin{split}
\begin{align*}
&\text{Matrix Phase:} \quad \int_{\Omega_{\text{matrix}}} \alpha_{\text{matrix}} \frac{\partial T_{\text{matrix}}}{\partial t} \phi_{\text{matrix}} \,d\Omega_{\text{matrix}} - \int_{\Omega_{\text{matrix}}} \nabla \cdot (\beta_{\text{matrix}} T_{\text{matrix}} \mathbf{I}) \cdot \phi_{\text{matrix}} \,d\Omega_{\text{matrix}} = 0 \\
&\text{Fiber Phase:} \quad \int_{\Omega_{\text{fiber}}} \alpha_{\text{fiber}} \frac{\partial T_{\text{fiber}}}{\partial t} \phi_{\text{fiber}} \,d\Omega_{\text{fiber}} - \int_{\Omega_{\text{fiber}}} \nabla \cdot (\beta_{\text{fiber}} T_{\text{fiber}} \mathbf{I}) \cdot \phi_{\text{fiber}} \,d\Omega_{\text{fiber}} = 0
\end{align*}
\end{split}\]