Incompressible Flow Past a Cylinder#
Mathematical Model:#
Consider the steady, incompressible Navier-Stokes equations for fluid flow around a cylinder:
\[\begin{split}
\begin{align}
\rho (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} \\
\nabla \cdot \mathbf{v} &= 0
\end{align}
\end{split}\]
Boundary Conditions#
Inlet: \(\mathbf{v} = (U, 0)\) (uniform velocity).
Outlet: \(\frac{\partial \mathbf{v}}{\partial x} = 0\) (zero gradient).
Cylinder surface: \(\mathbf{v} \cdot \mathbf{n} = 0\) (no-slip condition).
Initial Conditions#
Assume a quiescent fluid, i.e., \(\mathbf{v} = (0, 0)\) at \(t = 0\).
Weak Formulation#
Find \(\mathbf{v} \in H_0^1(\Omega)\) and \(p \in L^2(\Omega)\) such that:
\[\begin{split}
\begin{align}
\int_{\Omega} \rho (\mathbf{v} \cdot \nabla) \mathbf{v} \cdot \mathbf{w} \, d\Omega & = -\int_{\Omega} p \nabla \cdot \mathbf{w} \, d\Omega + \mu \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} \, d\Omega + \int_{\Omega} \rho \mathbf{g} \cdot \mathbf{w} \, d\Omega \\
\int_{\Omega} \nabla \cdot \mathbf{v} q \, d\Omega & = 0
\end{align}
\end{split}\]
where \(\mathbf{w} \in H_0^1(\Omega)\) and \(q \in L^2(\Omega)\).